SPECIFICATIONS

WF182BD01/02 7" die cast, Nomex cone mid/woofers, 4/8 ohm

The 7" transducers WF182BD01 (4 ohm) and WF182BD02 (8 ohm) were designed as high performance bass and midrange units for monitors and high-end hi-fi speakers. They offer outstanding deep bass performance and dynamic and detailed midrange.

FEATURES

- Balanced Drive motor structure for optimal drive force symmetry resulting in largely reduced even order harmonic distortion
- Copper cap on center pole to reduce voice coil inductance and to minimize variations in voice coil inductance as a function of voice coil position
- Black Nomex cone
- Rigid die cast alu chassis with extensive venting for lower air flow speed reducing audible distortion
- · Vented voice coil former for reduced distortion and compression
- Vented center pole with dual flares for reduced noise level at large cone excursions
- Heavy-duty black fiber glass voice coil former to reduce mechanical losses resulting in better dynamic performance and low-level details
- Large motor with 11/2" voice coil diameter for better control and power handling
- Built-in alu field-stabilizing ring for reduced distortion at high levels
- Low-loss suspension (high Qm) for better reproduction of details and dynamics
- · Black motor parts for better heat transfer to the surrounding air
- Conex spider for better durability under extreme conditions
- Gold plated terminals to ensure long-term trouble free connection

NOMINAL SPECIFICATIONS

		WF182BD01		WF182BD02		
Notes	Parameter	Before	After	Before	After	Unit
		burn-in	burn-in	burn-in	burn-in	
	Nominal size	7		7		[inch.]
	Nominal impedance	4		8		[ohm]
	Recommended max. upper frequency limit	3		3		[kHz]
1	Sensitivity, 2.83V/1m (average SPL in range 200 - 1,000 Hz)	88		85		[dB]
2	Power handling, short term, IEC 268-5, no additional filtering					[W]
2	Power handling, long term, IEC 268-5, no additional filtering					[W]
2	Power handling, continuous, IEC 268-5, no additional filtering	80		80		[W]
	Effective radiating area, Sd	131		131		[cm²]
3, 6	Resonance frequency (free air, no baffle), F _S	33	28.5	34	29.5	[Hz]
	Moving mass, incl. air (free air, no baffle), Mms	23	3.5	22		[g]
3	Force factor, Bxl	6.5		8.2		[N/A]
3, 6	Suspension compliance, Cms	1.0	1.33	1.0	1.33	[mm/N]
3, 6	Equivalent air volume, Vas	24	32	24	32	[lit.]
3, 6	Mechanical resistance, R _{ms}	0.44	0.46	0.44	0.46	[Ns/m]
3, 6	Mechanical Q, Q _{ms}	11	9	11	9	[-]
3, 6	Electrical Q, Q _{es}	0.37	0.32	0.45	0.39	[-]
3, 6	Total Q, Qts	0.36	0.31	0.43	0.37	[-]
4	Voice coil resistance, RDC	3.2		6.4		[ohm]
5	Voice coil inductance, Le (measured at 10 kHz)	0.10		0.16		[mH]
	Voice coil inside diameter	39		39		[mm]
	Voice coil winding height	16		16		[mm]
	Air gap height	5		5		[mm]
	Magnet weight	725		725		[g]
	Total unit net weight excl. packaging	1.9		1.9		[kg]
3, 5	K _{rm}	44		57		[mohm]
3, 5	E _{rm}	0.40		0.41		[-]
3, 5	K _X m	63		141		[mH]
3, 5	Exm	0.32		0.28		[-]

Note 1 Measured in infinite baffle.

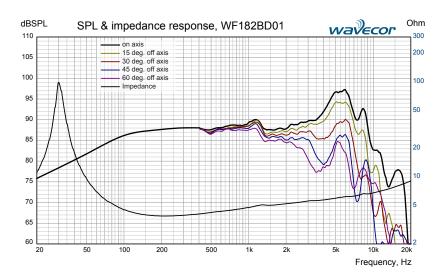
Note 6 After burn-in specifications are measured 12 hours after exiting the transducer by a 20 Hz sine wave for 2 hours at level 10/14.1 V_{RMS} (4/8 ohm version). The unit is not burned in before shipping.

Specifications are subject to change without any further notice. Copyright © 2010 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit **www.Wavecor.com**

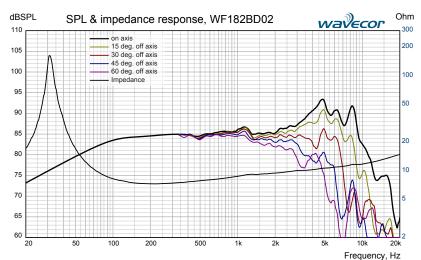
Note 2 Tested in free air (no cabinet).

Note 3 Measured using a semi-constant current source, nominal level 2 mA.

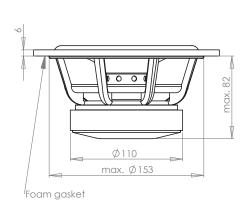
Note 4 Measured at 20 deg. C

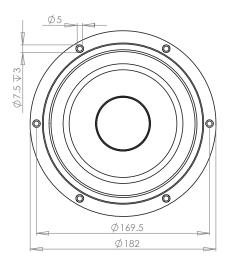

Note 5 It is generally a rough simplification to assume that loudspeaker transducer voice coils exhibit the characteristics of an inductor. Instead it is a far more accurate approach to use the more advanced model often referred to as the "Wright empirical model", also used in LEAP-4 as the TSL model (www.linearx.com), involving parameters K_{TM}, E_{TM}, K_{XM}, and E_{XM}. This more accurate transducer model is described in a technical paper here at our web site.

SPECIFICATIONS



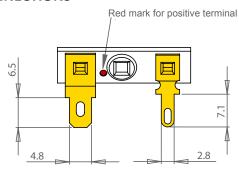
WF182BD01/02 7" die cast, Nomex cone mid/woofers, 4/8 ohm




Measuring conditions, SPL
Driver mounting: Flush in infinite
baffle, back side open (no cabinet)
Microphone distance: 1.0 m
Input level: 2.83 V_{RMS}
Smoothing: 1/6 oct.

Measuring conditions, impedance
Driver mounting: Free air, no baffle,
back side open (no cabinet)
Input signal: Semi-current-drive,
nominal current 2 mA
Smoothing: None

OUTLINE DRAWING (nominal dimensions, mm)



Specifications are subject to change without any further notice. Copyright © 2010 by Wavecor Ltd., Guangzhou, China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit **www.Wavecor.com**

CONNECTIONS

Thickness, both terminals: 0.5 mm Terminal plating: Gold

PACKAGING AND ORDERING INFORMATION

Part no. WF182BD01-01	4 ohm version, individual packaging (one piece per box)
Part no. WF182BD01-02	4 ohm version, bulk packaging
Part no. WF182BD02-01	8 ohm version, individual packaging (one piece per box)
Part no. WF182BD02-02	8 ohm version, bulk packaging

Latest update: Jan. 1, 2010